

User Defined Model
Development Guide

Last Updated: March 14, 2013

PowerWorld Corporation

2001 South First St
Champaign, IL 61820

(217) 384-6330
http://www.powerworld.com

info@powerworld.com

Overview
The purpose of this document is to describe the user defined modeling interface in PowerWorld
Simulator to developers. This document should facilitate a deeper understanding of the interactions of
user defined models (UDMs) with Simulator. The basics of UDMs from a user’s perspective are covered
in Simulator’s standard help documentation. Additionally, a tutorial and templates containing sample
code are available.

User defined models provide an alternative to built-in models. The user can load standalone alone *.dll
files and assign them to components in the power system case. These DLL files contain a library of
functions that is completely separate but can be accessed from PowerWorld Simulator.

.dll for user-defined
model in Pascal

.dll for user-defined
model in C++

.dll for user-defined
model in Fortran

On the Simulator side, each user defined model DLL is represented by a UserDefinedModel object. This
object is not automatically linked to any particular transient stability objects (generators, etc.). There
are no instances of it until you insert them.

Each DLL corresponds to one user defined model type. Simulator manages all memory and keeps track
of all of the instances of each type. When a new instance of a model is created, the DLL initializes it, and
Simulator maintains all of the values of its parameters and states, etc. The DLL is given access to the
memory where that information is stored (using pointers) so the DLL can access it within its functions.

The functions, their input arguments, and their return values are described in Section 6. The tutorial and
sample models provide a starting point to begin creating user-defined models. The programming
languages that have been tested are Pascal, C++ and Fortran. There are some limitations in Fortran
because it lacks an object-oriented style; Pascal and C++ might prove more useful, especially when
making complicated models such as CLOD (Complex Load Model).

Everything discussed in this document is geared towards a 32-bit platform.

1. Developer’s Responsibility
All of the variables in user defined modeling are passed as pointers. This allows the DLLs to manipulate
the data and operate as intended with PowerWorld Simulator. However, code in the DLL can potentially
impact other parts of PowerWorld Simulator by inadvertently overwriting memory locations in use. This
may lead to undesired operation of Power World Simulator. It is the responsibility of model developer to
ensure that the DLL does not initiate such unwanted operations. The sample models are intended to
provide an appropriate reference.

2. Model Class Types
The presently supported model classes and their corresponding names in Simulator are given in the
table below.

 Simulator Name
Machine Models UserDefinedMachineModel
Exciter Models UserDefinedExciter
Governor Models UserDefinedGovernor
Stabilizer Models UserDefinedStabilizer
Load Characteristic Models UserDefinedLoadModel
Multi-terminal DC Converter Models UserDefinedMTDCConverter
Multi-terminal DC Line Models UserDefinedMultiTerminalDC

3. Automatic Loading of DLLs from Directories
The user simply drops all user defined models that are to be used in a specific directory and tells
Simulator where that directory is. Once a directory is selected to monitor, Simulator will automatically
try to read in all of the DLL files contained in that directory as user defined models. Simulator will watch
for changes in the directory and automatically add or remove the corresponding Simulator models
accordingly. To aid those who are developing the user defined models, since it is not always possible to
move the DLLs to a directory during debugging, multiple paths may be specified which are accessed in
the specified order.

4. Signal Selection
Each class of supported model now has a hard-coded list of signals that are passed into and out of the
model. This automatic handling of signal selection is done to make development easier for the user
defined model – the signals which are necessary and common for the model class are automatically
included. This is to avoid requiring the user to specify the signals which essentially are the same for all
models of the same model class, i.e. machine models, governor models, etc.

If additional input fields from Simulator are required, they can be specified in the “Algebraics” array
inside the TTxMyModelData structure. The user defined model tells Simulator the size of this array, and
Simulator allocates memory for it. The signalSelection function specifies the field name, bus loc, and
digits corresponding to the values to be passed in the Algebraics array. If an object other than the local
object is to be used for a particular field, the “digits” field specifies which extra object to use,

corresponding to “Num” in OtherObjectClass and OtherObjectDescription. For example, a stabilizer may
use a voltage signal from another bus.

Simulator does not need to know all that is stored in the Algebraics array. After the end of the fields
specified by signalSelection, the user can store Custom Algebraics that are not used internally by
Simulator. Simulator does still have access to these variables for plotting. All computations with
Custom Algebraics, if any, are on the DLL side. Some models such as load models may require custom
variables of this type.

5. Hard-coded Available Signals by Index for Each Model Class
Certain signals are always automatically made available to each model based on its class. The values of
the signals are located inside the HardCodedSignals array of the TTxMyModelData structure, using the
indices given below. Indexing begins at zero.

Exciter Models
HARDCODE_EXCITER_Vref = 0;
HARDCODE_EXCITER_InitFieldVoltage = 1;
HARDCODE_EXCITER_FieldCurrent = 2;
HARDCODE_EXCITER_GenVcomp = 3;
HARDCODE_EXCITER_GenSpeedDeviationPU = 4;
HARDCODE_EXCITER_BusVoltMagPU = 5;
HARDCODE_EXCITER_StabilizerSignal = 6;
HARDCODE_EXCITER_OELActive = 7;
HARDCODE_EXCITER_OELSignal = 8;
HARDCODE_EXCITER_UELActive = 9;
HARDCODE_EXCITER_UELSignal = 10;

[Index] Signal Description
[0] HARDCODE_EXCITER_Vref Voltage reference for the exciter. Value should

be set by the DLL during initialization and is an
input afterward.

[1] HARDCODE_EXCITER_InitFieldVoltage Initial value of machine field voltage Efd. Input
only.

[2] HARDCODE_EXCITER_FieldCurrent Present value of machine field current Ifd. Input
only.

[3] HARDCODE_EXCITER_GenVcomp Compensated terminal voltage of the machine.
Input only.

[4] HARDCODE_EXCITER_GenSpeedDeviationPU Generator speed deviation Δω. Input only.
[5] HARDCODE_EXCITER_BusVoltMagPU Generator terminal voltage magnitude. Input

only.
[6] HARDCODE_EXCITER_StabilizerSignal Input signal from stabilizer Vs. Input only.
[7] HARDCODE_EXCITER_OELActive Flag for active over excitation limiter (OEL), 1

indicates active.
[8] HARDCODE_EXCITER_OELSignal OEL signal, if active. Input only.
[9] HARDCODE_EXCITER_UELActive Flag for active under excitation limiter (UEL), 1

indicates active.
[10] HARDCODE_EXCITER_UELSignal UEL signal, if active. Input only.

Governor Models
HARDCODE_GOV_Pref = 0;
HARDCODE_GOV_InitPmech = 1;
HARDCODE_GOV_GenSpeedDeviationPU = 2;
HARDCODE_GOV_GenPElecPU = 3;
HARDCODE_GOV_GenMVABase = 4;
HARDCODE_GOV_GovResponseLimits = 5;
HARDCODE_GOV_StabStatePitch = 6;

[Index] Signal Description
[0] HARDCODE_GOV_Pref Power reference Pref. Value should be set by the DLL

during initialization and is an input afterward.
[1] HARDCODE_GOV_InitPmech Initial mechanical power Pmech. Input only.
[2] HARDCODE_GOV_GenSpeedDeviationPU Generator speed deviation Δω. Input only.
[3] HARDCODE_GOV_GenPElecPU Electrical power Pelec. Input only.
[4] HARDCODE_GOV_GenMVABase Generator MVA base. Input only.
[5] HARDCODE_GOV_GovResponseLimits Governor response limits. A byte representing the

“GE Baseload_flag” parameter, where 0 means
“normal” (valves act normally and can open or close),
1 means “close only” response (valves can close but
not open), and 2 means “fixed” response (valve is
stuck at present position). Input only.

[6] HARDCODE_GOV_StabStatePitch Pitch input from “stabilizer” pitch model. Input only.
Applicable only for wind models.

Stabilizer Models
HARDCODE_STAB_GenSpeedDeviationPU = 0;
HARDCODE_STAB_BusFreqDeviationPU = 1;
HARDCODE_STAB_GenPElecPU = 2;
HARDCODE_STAB_GenPAccelPU = 3;
HARDCODE_STAB_BusVoltMagPU = 4;
HARDCODE_STAB_GenVcomp = 5;

[Index] Signal Description
[0] HARDCODE_STAB_GenSpeedDeviationPU Generator speed deviation Δω. Input only.
[1] HARDCODE_STAB_BusFreqDeviationPU Bus frequency deviation Δω. Input only.
[2] HARDCODE_STAB_GenPElecPU Electrical power Pelec. Input only.
[3] HARDCODE_STAB_GenPAccelPU Accelerating power Paccel. Input only.
[4] HARDCODE_STAB_BusVoltMagPU Generator terminal voltage magnitude. Input only.
[5] HARDCODE_STAB_GenVcomp Compensated terminal voltage of the machine. Input

only.

Machine Models
HARDCODE_MACHINE_TSGenFieldV = 0;
HARDCODE_MACHINE_TSPmech = 1;

HARDCODE_MACHINE_InitVreal = 2;
HARDCODE_MACHINE_InitVimag = 3;
HARDCODE_MACHINE_InitIreal = 4;
HARDCODE_MACHINE_InitIimag = 5;
HARDCODE_MACHINE_TSstateId = 6;
HARDCODE_MACHINE_TSstateIq = 7;

[Index] Signal Description
[0] HARDCODE_MACHINE_TSGenFieldV Field voltage Efd signal from exciter. Value should be

set by the DLL during initialization and is an input
afterward.

[1] HARDCODE_MACHINE_TSPmech Mechanical power Pmech signal from governor.
Value should be set by the DLL during initialization
and is an input afterward.

[2] HARDCODE_MACHINE_InitVreal Real part of the initial terminal voltage. Input only.
[3] HARDCODE_MACHINE_InitVimag Imaginary part of the initial terminal voltage. Input

only.
[4] HARDCODE_MACHINE_InitIreal Real part of the initial terminal current. Input only.
[5] HARDCODE_MACHINE_InitIimag Imaginary part of the initial terminal current. Input

only.
[6] HARDCODE_MACHINE_TSstateId Machine d-axis current Id. Value should be set during

machine initialization and is an input afterward.
Then, this value is maintained by Simulator using the
Thevenin or Norton equivalent parameters from the
DLL.

[7] HARDCODE_MACHINE_TSstateIq Machine q-axis current Iq. Value should be set during
machine initialization and is an input afterward.
Then, this value is maintained by Simulator using the
Thevenin or Norton equivalent parameters from the
DLL.

Load Characteristic Models
HARDCODE_LOAD_DeviceVPU = 0;
HARDCODE_LOAD_DeviceAngleRad = 1;
HARDCODE_LOAD_DeltaFreqPU = 2;
HARDCODE_LOAD_DeviceStatus = 3;
HARDCODE_LOAD_LoadScalar = 4;

[Index] Signal Description
[0] HARDCODE_LOAD_DeviceVPU Load bus voltage magnitude. Input only.
[1] HARDCODE_LOAD_DeviceAngleRad Load bus voltage angle. Input only.
[2] HARDCODE_LOAD_DeltaFreqPU Load bus frequency deviation from nominal Δω.

Input only.
[3] HARDCODE_LOAD_DeviceStatus A boolean indicating whether the load is in service.

Input only.
[4] HARDCODE_LOAD_LoadScalar A scalar for scaling the load. All loads that derive

from this load should be multiplied by this scalar.

This is initially 1, but load relays may cause it to be
reduced.

Multi-Terminal DC Converter Models
HARDCODE_MTDCConv_IRef = 0;
HARDCODE_MTDCConv_InitIOrd = 1;
HARDCODE_MTDCConv_InitCosAngle = 2;
HARDCODE_MTDCConv_Idc = 3;
HARDCODE_MTDCConv_Vdc = 4;
HARDCODE_MTDCConv_Vac = 5;

[Index] Signal Description
[0] HARDCODE_MTDCConv_IRef Present value of the current reference ID_Ref. Value

should be set by the DLL during initialization and is an
input afterward.

[1] HARDCODE_ MTDCConv _InitIOrd Initial current order. Input only.
[2] HARDCODE_ MTDCConv _InitCosAngle Initial cosine of the control angle. Here, this signal is

input only. Its value should be maintained by the DLL
in the MTDCConverterCosControlAngle function.

[3] HARDCODE_ MTDCConv _Idc DC current in Amps. Input only.
[4] HARDCODE_ MTDCConv _Vdc DC voltage in kV. Input only.
[5] HARDCODE_ MTDCConv _Vac AC voltage in pu. Input only.

Multi-Terminal DC Line Models
Multi-terminal DC lines will receive the following hardcoded signals for each converter model.

HARDCODE_MTDC_Iref = 0;
HARDCODE_MTDC_Idc = 0;
HARDCODE_MTDC_Vdc = 1;
HARDCODE_MTDC_Vac = 2;
HARDCODE_MTDC_IdcSense = 3;
HARDCODE_MTDC_VdcSense = 4;
HARDCODE_MTDC_VacSense = 5;

[Index] Signal Description
[0] HARDCODE_MTDC_IRef Present value of the current reference ID_Ref from the

converter.
[1] HARDCODE_ MTDC _Idc MTDC line section current in Amps from network

solution.
[1] HARDCODE_ MTDC _Vdc MTDC voltage at the DC bus from network solution.
[2] HARDCODE_ MTDC _Vac MTDC voltage at the AC bus from networks olution.
[3] HARDCODE_ MTDC _IdcSense Sensed DC current in Amps from the converter.
[4] HARDCODE_ MTDC _VdcSense Sensed DC voltage in kV from the converter.
[5] HARDCODE_ MTDC _VacSense Sensed AC voltage in pu from the converter.

6. Exported Functions for Each Model Class
A list of function names that must be made available in the export directory of the DLL for each model
class is given below. Functions with names in italic are optional. Detailed descriptions of each function
are given in the tables that follow. Data type compatibility is discussed in Section 8. The functions in the
export directory of the DLL file are all called using the stdcall calling convention which is a variation on
the Pascal calling convention in which the callee is responsible for cleaning up the stack, but the
parameters are pushed onto the stack in right-to-left order. Registers EAX, ECX, and EDX are designated
for use within the function. Return values are stored in the EAX register.

Note that the function calls (including names and parameter types) exported from this DLL must exactly
match those being expected in Simulator (as listed below).

All - General
DLLVersion
modelClassName
allParamCounts
parameterName
stateName
getDefaultParameterValue
OtherObjectClass
OtherObjectDescription
getStringParamDefaultValue
signalSelection

DLLVersion

An integer to support versioning in the future. Currently, use “1.”
parameters N/A
result Integer
modelClassName

Simulator calls this function twice, once to get the length (“result”) in characters of the model
class name, and once to retrieve the model class name, i.e. “UserDefinedExciter,” in the buffer
which Simulator allocates. The purpose of this function is for Simulator to recognize the type of
transient stability model contained in the DLL. This should be one of the supported classes.
parameters (StrSize:PInteger; StrBuf : PChar; dummy : Integer)
result Integer
allParamCounts

Fills the TTxParamCounts structure in Simulator to tell Simulator how much memory to allocate.
parameters (var numbersOfEverything : TTxParamCounts; TimeStepSeconds :

double)
result N/A
parameterName

Simulator calls this function twice for each parameter and works the same way as
modelClassName.
parameters (paramNum : PInteger; StrSize : PInteger; StrBuf : PChar; dummy :

Integer)
result Integer
stateName

Works the same way as modelClassName.
parameters (paramNum : PInteger; StrSize : PInteger; StrBuf : PChar; dummy :

Integer)
result Integer
getDefaultParameterValues

Simulator retrieves the default parameter values inside a TTxMyModelData structure.
parameters (paramsAndStates : PTxMyModelData)
results N/A
OtherObjectClass

The PowerWorld class of each “other object” to be used. This function must be written if the
model uses “other objects.” This must match the object name in Simulator, i.e. “Bus.” Works the
same way as modelClassName. “Num” gives the index of the other object in the list.
parameters (Num : PInteger; StrSize : PInteger; StrBuf : PChar; dummy : Integer)
results Integer
OtherObjectDescription

A user-specified description of each “other object” to be used, i.e. “Signal Bus,” used for the GUI.
This function should be written if the model uses “other objects.”
parameters (Num : PInteger; StrSize : PInteger; StrBuf : PChar; dummy : Integer)
results Integer
getStringParamDefaultValue

Default values for string parameters, if any.
parameters (Num : PInteger; StrSize : PInteger; StrBuf : PChar; dummy : Integer)
results Integer
signalSelection

Names of fields in ALG vector at position Num. Only fields that Simulator knows about should
appear. This includes fields corresponding to “other objects,” where the format is
“FieldName:BusLoc:Digits,” where Digits specifies the other object (Num) in otherObjectClass and
otherObjectDescription. Custom algebraics should only appear at the end of the ALG vector, and
are not listed here.
parameters (Num : PInteger; StrSize : PInteger; StrBuf : PChar; dummy : Integer)
results Integer

All - Numerical Integration
initializeYourself
calculateFofX
PropogateIgnoredStateAndInput
SubIntervalPower2Exponent
getNonWindUpLimits
TimeStepEnd
TimeStepEndAction

initializeYourself

Initialization of the dynamic model. By assuming f(x) is zero at steady-state, the initial values of
the model states are set inside the TTxMyModelData structure, pointed to by PTxMyModelData.
The TTxMyModelData structure shares relevant network input fields with the DLL and allows the
DLL to set the values of the calculated fixed input fields needed by Simulator. Relevant system
options are also shared. See description of the TTxMyModelData and TTxSystemOptions
structures.
parameters (paramsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results N/A
calculateFofX

These are the differential equations of the model, xdot = f(x), which get called every time step.
The actual numerical integration of these equations is handled in Simulator.
parameters (paramsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions; nonWindUpLimits : PTxNonWindUpLimits; dotX :
PDouble)

results N/A
PropogateIgnoredStateAndInput

This function handles ignored states. That is, if choices for certain parameter values cause a state
to be “ignored,” this function must make sure the inputs to the ignored state are correctly
propagated through to the next state. ParamsAndStates.IgnoreStates is used to propogate the
values and should be set in the initialization function based on the parameters. An example of
this is the User_IEEEST model.
parameters (paramsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results N/A
SubIntervalPower2Exponent

This is an optional function that tells Simulator the exponent to use when determining the
number of subintervals for integrating the model. The actual number of subintervals will be
calculated as 2^exponent, so if you want 8 subintervals, this function should return 3 (2^3=8).
parameters N/A
results Integer
getNonWindUpLimits

This function tells Simulator the index of states which have non-windup limits and the values of

those limits by setting LimitStates, minLimits, and maxLimits inside the TTxNonWindUpLimits
structure. “Result” specifies how many states have nonwindup limits. States are indexed starting
at zero.
parameters (paramsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions; nonWindUpLimits : PTxNonWindUpLimits)
results N/A
TimeStepEnd

This function can perform specific checks at the end of a timestep and returns true if an action
should actually occur at the end of the timestep. The User_CLOD model uses this to check
whether to perform an undervoltage trip.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions; index : Integer; MaxPossibleEventIndex :
PInteger; EventTime : PDouble; ExtraObjectIndex : PInteger)

results Boolean
TimeStepEndAction

This function returns a string containing the name of the action for Simulator to perform
corresponding to the same “index” in TimeStepEnd, a pipe character |, and a custom log
message. The action should match PowerWorld’s syntax for event descriptions, i.e. keyword
“OPEN” will trip a load. Like all string functions, this is called twice.
parameters (ParamsAndStates : PTxMyModelData;

SystemOptions : PTxSystemOptions; index : integer;
StrSize: PInteger; StrBuf: PChar; dummy : Integer)

results Boolean

Exciter Models
ExciterEfieldOut

ExciterEfieldOut

This function returns the final value of Efield from the exciter, taking into account any limits. This
value is the field voltage of the machine model, EFD.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results Double

Governor Models
GovernorPmechOut

GovernorPmechOut

This function returns Pmech out of the governor. This value is the mechanical power input for the
machine model.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results Double

Stabilizer Models
StabilizerVsOut
StabilizerPitchOut

StabilizerVsOut

This function returns VS out of the Stabilizer, which is passed into the exciter.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results Double
StabilizerPitchOut

If the “stabilizer” is a wind turbine pitch control model, this function returns its pitch, to be used
by the wind turbine “governor” model.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results Double

Machine Models
MachineSpeedDeviationOut
MachineTheveninImpedance
MachineTheveninVoltage
MachineFieldCurrent
MachineElectricalTorque
MachineNortonCurrent
MachineHighVReactiveCurrentLim
MachineLowVActiveCurrentPoints
MachineCompensatingImpedance

MachineSpeedDeviationOut

This function returns the machine speed deviation from synchronous, which is normally also a
state. This is passed into the governor model. It is also be used with Generic Limit Monitors to
implement basic protection functionality for low frequency, high frequency, or excessive change.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results Double
MachineTheveninImpedance

This function returns the equivalent Thevenin impedance of the machine (R + jX), which is passed
back to the network. For the GENCLS model, this is simply (Ra + jXd’).
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions; theR : PDouble; theX : PDouble)
results Double
MachineTheveninVoltage

This function returns the equivalent Thevenin voltage of the machine in the form (Vd+jVq)ej(δ-π/2),
which is passed back to the network.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions; Delta : PDouble; Vd : PDouble; Vq : PDouble)
results Double
MachineFieldCurrent

This function returns the field current of the machine, which feeds into the exciter model as IFD.
This may also be checked by other models such as over excitation limiters (OELs) and under
excitation limiters (UELs).
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results Double
MachineElectricalTorque

This function returns the electrical torque delivered by the machine.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results Double
MachineNortonCurrent

This function returns the equivalent Norton current of the machine, which is passed back to the
network. This function can be written instead of the Thevenin equivalent voltage.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions; IReal : PDouble; IImag : PDouble)
results Double
MachineHighVReactiveCurrentLim

Returns the high voltage limit for high voltage reactive current management, if any. If this voltage
is exceeded at the bus, the functionality adjusts the reactive power injection to clamp the voltage.
If this voltage is exceeded during initialization, the limit is assumed to be incorrect and is ignored.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results Double
MachineLowVActiveCurrentPoints

For low voltage active current management. Returns the breakpoints, if any. When the bus
voltage is above Lvpt1, no low voltage logic is used. When the bus voltage is below Lvpnt0, the
active current is zero. Between Lvpt1 and Lvpt0, the active current is linearly ramped down. This
should only occur during a fault.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions; Lvpnt1 : PDouble; Lvpnt0 : PDouble)

results N/A
MachineCompensatingImpedance

This function returns the compensating resistance and reactance for the machine, if any.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions; Rcomp : PDouble; Xcomp : PDouble)
results N/A

Load Characteristic Models
LoadNortonAdmittance
LoadNortonCurrent
LoadNortonCurrentAlgebraicDerivative
LoadInitializeAlgebraic

LoadNortonAdmittance

Returns the equivalent Norton admittance of the load.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions; theG : PDouble; theB : PDouble)
results N/A
LoadNortonCurrent

Returns the equivalent Norton current of the load.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions; IReal : PDouble; IImag : PDouble)
results N/A
LoadNortonCurrentAlgebraicDerivative

Derivative of the equivalent Norton current of the load with respect to rectangular voltage.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions; IReal_dVreal : PDouble; IReal_dVimag : PDouble;
IImag_dVreal : PDouble; IImag_dVimag : PDouble)

results N/A
LoadInitializeAlgebraic

Initializes the algebraic variables for the load, including the P and Q used. Custom algebraic
variables in the Algebraics vector may be initialized here. Returns true if successful.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions; INPUT_PUTol, SteadyStateP, SteadyStateQ,
SteadyStateV : Double; InitLoadP, InitLoadQ : PDouble)

results Boolean

Multi-Terminal DC Converter Models
MTDCConverterCosControlAngle
MTDCConverterIdcSense
MTDCConverterVdcSense
MTDCConverterVacSense
MTDCConverterCurrentLimitAndMargin

MTDCConverterCosControlAngle

Returns the output of the converter, the cosine of the control angle, either cos(α) or cos(β),
depending on whether the converter is acting as a rectifier or inverter, respectively.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results Double
MTDCConverterIdcSense

Returns the DC current which changes when the control angle changes. Other converters
connected to the same DC network may need to use this current.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results Double
MTDCConverterVdcSense

Returns the DC voltage at the converter terminal.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results Double
MTDCConverterVacSense

Returns the AC voltage at the converter terminal.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results Double
MTDCConverterCurrentLimitAndMargin

Sets the current limit on the current order (Iord) and margin for the limit. The margin
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions; IdRefLim, fid_Margin : PDouble)
results N/A

Multi-Terminal DC Line Models
MultiTerminalDCGetIDRef
NetworkSolutionEnd

MultiTerminalDCGetIDRef

This function returns the reference current IDRef.
parameters (ParamsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions; index : integer)
results Double
NetworkSolutionEnd

Called at the end of the time step to perform any final actions.
parameters (paramsAndStates : PTxMyModelData; SystemOptions :

PTxSystemOptions)
results N/A

7. Memory Sharing Data Structures
Data sharing between user defined transient stability model DLLs and Simulator is accomplished using
the following structures on the DLL side. The Simulator side performs all memory allocation
management.

TTxMyModelData Record
 TTxMyModelData = record
 FloatParams : PDouble;
 IntParams : PInteger;
 StrParams : PPChar;
 HardCodedSignals : PDouble;
 States : PDouble;
 IgnoreStates : PBoolean;
 Algebraics : PDouble;
 end;
 PTxMyModelData = ^TTxMyModelData;

TTxSystemOptions Record
 TTxSystemOptions = record
 IgnoreLimitChecking : boolean;
 TimeStepSeconds : double;
 SimulationTimeSeconds : double;
 WBase : double;
 SBase : double;
 PUSolutionTolerance : double;
 MinVoltSLoad : double;
 MinVoltILoad : double;
 end;
 PTxSystemOptions = ^TTxSystemOptions;

TTxNonWindUpLimits Record
 TTxNonWindUpLimits = record
 LimitStates : PInteger;
 minLimits : PDouble;
 maxLimits : PDouble;
 activeLimits : PByte;
 end;
 PTxNonWindUpLimits = ^TTxNonWindupLimits;

TTxParamCounts Record
 TTxParamCounts = record
 nFloatParams : Integer;
 nIntParams : Integer;
 nStrParams : Integer;
 nStates : Integer;
 nAlgebraics : Integer;
 nNonWindUpLimits : Integer;
 end;
 PTxParamCounts = ^TTxParamCounts;

TTxMyModelData

A record containing all state, parameter, and signal data associated with each instance of a user
defined model.
FloatParams : PDouble Pointer to array of double parameters
IntParams : PInteger Pointer to array of integer parameters
StrParams : PPChar Pointer to array of string parameters
HardCodedSignals : PDouble Pointer to double array of hard-coded signals from PW. These are

always the same for all models of each class (i.e., all stabilizers,
governors, etc.). Simulator always shares these signals with the
DLL. If additional signals are needed from Simulator, they must be
defined using the Algebraics array and the signalSelection
function.

States : PDouble Pointer to double array of state variables x
IgnoreStates : PBoolean Pointer to a boolean array indicating whether each state is to be

ignored
Algebraics : PDouble Pointer to a double array containing all signals other than the

hardcoded signals.

The signalSelection function can define and then the Algebraics
array can access any fields that are available in Simulator. The
signalSelection function lists the object/fields to be accessed, and
the Algebraics array is where the actual values are located.

Additionally, the Algebraics array may be used by the DLL to
maintain its own “custom” algebraic variables. Custom algebraics
must appear in the array AFTER the variables defined by

signalSelection. An example of a model that uses custom
algebraics is the User_CLOD model.

TTxSystemOptions

A record containing system options that may be relevant to the user defined model during the
transient stability simulation. These are available to the DLL from Simulator.
IgnoreLimitChecking : boolean Set to true if limits should be ignored
TimeStepSeconds : double The time step in seconds
SimulationTimeSeconds : double The present time in seconds in the transient stability

simulation. This is useful for models that use timers.
WBase : double The base frequency in rad/sec
SBase : double The three-phase power base
PUSolutionTolerance : double
MinVoltSLoad : double The minimum allowable voltage for constant power load
MinVoltSLoad : double The minimum allowable voltage for constant current load
TTxNonWindUpLimits

A record specifying the states which have non-windup limits, what the limit values are, and which
limits are presently active for each state.
LimitStates : PInteger A pointer to an integer array specifying the states by number

which have non-windup limits.
minLimits : PDouble A pointer to a double array listing the minimum values of the

limits for the states in LimitStates
maxLimits : PDouble A pointer to a double array listing the maximum values of the

limits for the states in LimitStates
activeLimits : PByte A pointer to a byte array which contains information on

which limits are active. For each limit in LimitStates, a value
of 0 means not active, 1 means active at the high limit, and 2
means active at the low limit.

TTxParamCounts

A record used to hold and access the counts of each of array. This prevents us from requiring
many different “getNumberOf” functions in the DLL that need to be called by Simulator in order
to allocate memory. It is convenient to define these numbers as constants in the DLL.
nFloatParams : Integer Number of double parameters
nIntParams : Integer Number of integer parameters
nStrParams : Integer Number of string parameters
nStates : Integer Number of dynamic states
nAlgebraics : Integer Number of algebraic variables in the Algebraics array. This

number MUST include any custom algebraics in addition to
the algebraics defined by signalSelection.

nNonWindUpLimits : Integer Number of states with non-windup limits

Extra Objects
In addition to having access to all of an object’s own fields, each user defined model also has the ability
to specify “extra objects,” where fields for other objects can serve as inputs or outputs to the model.

Values corresponding to the extra objects are stored in the algebraic vector. The corresponding object
and field identifiers are specified in the signalSelection function.

DLL Side
The DLL does not know which particular object is selected, but it knows what field type it requires, and it
knows the index in the Algebraics array where it expects to find the value obtained from Simulator. The
functions OtherObjectClass and OtherObjectDescription must be written to specify what field is
required.

Simulator Side
There is a dialog for specifying the extra objects on the Simulator side. For example, all the DLL knows is
that it requires a “voltage” at a “signal bus.” Then, the user can choose the object, i.e. “Bus 3” on the
Simulator side.

8. Compatibility with Other Programming Languages
DLLs created in the programming languages Pascal, C++, and Fortran have been debugged and tested for
compatibility with PowerWorld Simulator. This section details the important differences of these
languages for PowerWorld UDM implementation.

Data Structures and Variable Passing
Implementation of the required variables and data structures is very similar in all three programming
languages. Example data structures are illustrated in Figure 1 and Figure 2. A structure with pointers to
arrays and an array are shown, respectively. The implementation of these is slightly different in Fortran.
Fortran also behaves somewhat differently when these variables are being passed to and from
functions. While Pascal and C++ allow both pass by value and pass by reference, Fortran always uses
pass by reference. To maintain compatibility with all three languages, some variables such as ParaNum,
StateNum, StrSize, and dummy are intentionally passed as pointers to their respective locations, even
though it is not necessary in Pascal and C++. The variable “dummy” appears in the function definitions
in Pascal and C++, but not in Fortran. It represents a hidden input argument which is inserted and
expected automatically on the Fortran side whenever a character array is being exchanged. Again, to
maintain compatibility, “dummy” must appear appropriately in Pascal and C++, but does not show up in
Fortran code.

There is no limit to the number of characters each string parameter (i.e., parameter name) can have in
Pascal and C++. However, a 30 character limit has been set in the templates created in Fortran, which
can be increased by altering a parameter in the Fortran script.

0 ... (N_F_PARAMS – 1)

array of 64-bit floats

0 ... (N_I_PARAMS – 1)

array of 32-bit integers

0 ... (N_S_PARAMS – 1)

array of array of 16-bit characters

0 ... (N_STATES – 1)

array of 64-bit floats

0 ... (N_ALGEBRAICS – 1)

array of 64-bit floats

FloatParams

pointer to array

IntParams

pointer to array

StrParams

pointer to array

States

pointer to array

Algebraics

pointer to array

ParamsAndStates

Figure 1: Structure with Pointers to Arrays

0 ... (N_STATES – 1)

array of 64-bit floats

dotX

Figure 2: Array

Data Type Compatibility
In mixed-language programming, particular attention needs to be given toward data type compatibility
between programming languages. There might be limitations, but the commonly used data types are
usually available in any programming language.

Table 1. Comparison between data types across languages

Bytes
[Bits]

Pascal
(Embarcadero® Delphi® XE

Version 15.0)

C++
(Microsoft® Visual Studio

2010)

Fortran
(Microsoft® Visual Studio

2010 with Silverfrost FTN95
plug-in)

1 [8] ShortInt __int8 integer(kind = 1)
2 [16] SmallInt __int16 integer(kind = 2)
4 [32] Integer int integer(kind = 3)
1 [8] Byte unsigned __int8

2 [16] Word unsigned __int16
4 [32] Cardinal unsigned int
1 [8] Boolean, ByteBool bool logical(kind = 1)

2 [16] WordBool logical(kind = 2)
4 [32] LongBool logical(kind = 3)
4 [32] Single float real(kind = 1)
8 [64] Double double real(kind = 2)

10 [80] Extended, Real (32-bit sys.) real(kind = 3)
1 [8] AnsiChar char character

2 [16] Char, WideChar wchar_t

Table 1 is not an exhaustive collection of data types, but a guide for those most commonly used. There
are possibly other aliases, which can be found within documentation of each language [1], [2], [3]. The
point to take note of is that, for cross-language compatibility, the type and the size of data types must
match.

9. Tutorial and Example DLL Files
A tutorial and example DLL project files are available for all three languages.

10. References

[1]http://docwiki.embarcadero.com/RADStudio/en/Delphi_Data_Types

[2]http://msdn.microsoft.com/en-us/library/s3f49ktz(v=vs.100).aspx

[3]http://www.silverfrost.com/ftn95-help/mixlan/basicdatatypes.aspx

http://docwiki.embarcadero.com/RADStudio/en/Delphi_Data_Types
http://msdn.microsoft.com/en-us/library/s3f49ktz(v=vs.100).aspx
http://www.silverfrost.com/ftn95-help/mixlan/basicdatatypes.aspx

	Overview
	1. Developer’s Responsibility
	2. Model Class Types
	3. Automatic Loading of DLLs from Directories
	4. Signal Selection
	5. Hard-coded Available Signals by Index for Each Model Class
	Exciter Models
	Governor Models
	Stabilizer Models
	Machine Models
	Load Characteristic Models
	Multi-Terminal DC Converter Models
	Multi-Terminal DC Line Models

	6. Exported Functions for Each Model Class
	All - General
	All - Numerical Integration
	Exciter Models
	Governor Models
	Stabilizer Models
	Machine Models
	Load Characteristic Models
	Multi-Terminal DC Converter Models
	Multi-Terminal DC Line Models

	7. Memory Sharing Data Structures
	TTxMyModelData Record
	TTxSystemOptions Record
	TTxNonWindUpLimits Record
	TTxParamCounts Record

	Extra Objects
	DLL Side
	Simulator Side

	8. Compatibility with Other Programming Languages
	Data Structures and Variable Passing
	Data Type Compatibility

	9. Tutorial and Example DLL Files
	10. References

