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Overview 
The purpose of this document is to describe the user defined modeling interface in PowerWorld 
Simulator to developers.   This document should facilitate a deeper understanding of the interactions of 
user defined models (UDMs) with Simulator. The basics of UDMs from a user’s perspective are covered 
in Simulator’s standard help documentation.   Additionally, a tutorial and templates containing sample 
code are available. 

User defined models provide an alternative to built-in models.   The user can load standalone alone *.dll 
files and assign them to components in the power system case.  These DLL files contain a library of 
functions that is completely separate but can be accessed from PowerWorld Simulator.  

.dll for user-defined 
model in Pascal

.dll for user-defined 
model in C++

.dll for user-defined 
model in Fortran  

 

On the Simulator side, each user defined model DLL is represented by a UserDefinedModel object.  This 
object is not automatically linked to any particular transient stability objects (generators, etc.).  There 
are no instances of it until you insert them.   

Each DLL corresponds to one user defined model type.  Simulator manages all memory and keeps track 
of all of the instances of each type.  When a new instance of a model is created, the DLL initializes it, and 
Simulator maintains all of the values of its parameters and states, etc.  The DLL is given access to the 
memory where that information is stored (using pointers) so the DLL can access it within its functions. 

The functions, their input arguments, and their return values are described in Section 6. The tutorial and 
sample models provide a starting point to begin creating user-defined models. The programming 
languages that have been tested are Pascal, C++ and Fortran. There are some limitations in Fortran 
because it lacks an object-oriented style; Pascal and C++ might prove more useful, especially when 
making complicated models such as CLOD (Complex Load Model). 

Everything discussed in this document is geared towards a 32-bit platform. 



1. Developer’s Responsibility 
All of the variables in user defined modeling are passed as pointers. This allows the DLLs to manipulate 
the data and operate as intended with PowerWorld Simulator.  However, code in the DLL can potentially 
impact other parts of PowerWorld Simulator by inadvertently overwriting memory locations in use. This 
may lead to undesired operation of Power World Simulator. It is the responsibility of model developer to 
ensure that the DLL does not initiate such unwanted operations. The sample models are intended to 
provide an appropriate reference. 

2. Model Class Types 
The presently supported model classes and their corresponding names in Simulator are given in the 
table below.   

 Simulator Name 
Machine Models UserDefinedMachineModel 
Exciter Models UserDefinedExciter 
Governor Models UserDefinedGovernor 
Stabilizer Models UserDefinedStabilizer 
Load Characteristic Models UserDefinedLoadModel 
Multi-terminal DC Converter Models UserDefinedMTDCConverter 
Multi-terminal DC Line Models UserDefinedMultiTerminalDC 

 

3. Automatic Loading of DLLs from Directories 
The user simply drops all user defined models that are to be used in a specific directory and tells 
Simulator where that directory is.  Once a directory is selected to monitor, Simulator will automatically 
try to read in all of the DLL files contained in that directory as user defined models.  Simulator will watch 
for changes in the directory and automatically add or remove the corresponding Simulator models 
accordingly.  To aid those who are developing the user defined models, since it is not always possible to 
move the DLLs to a directory during debugging, multiple paths may be specified which are accessed in 
the specified order. 

4. Signal Selection 
Each class of supported model now has a hard-coded list of signals that are passed into and out of the 
model.  This automatic handling of signal selection is done to make development easier for the user 
defined model – the signals which are necessary and common for the model class are automatically 
included.  This is to avoid requiring the user to specify the signals which essentially are the same for all 
models of the same model class, i.e. machine models, governor models, etc.   

If additional input fields from Simulator are required, they can be specified in the “Algebraics” array 
inside the TTxMyModelData structure.  The user defined model tells Simulator the size of this array, and 
Simulator allocates memory for it.  The signalSelection function specifies the field name, bus loc, and 
digits corresponding to the values to be passed in the Algebraics array.   If an object other than the local 
object is to be used for a particular field, the “digits” field specifies which extra object to use, 



corresponding to “Num” in OtherObjectClass and OtherObjectDescription.  For example, a stabilizer may 
use a voltage signal from another bus. 

Simulator does not need to know all that is stored in the Algebraics array.  After the end of the fields 
specified by signalSelection, the user can store Custom Algebraics that are not used internally by 
Simulator.  Simulator does still have access to these variables for plotting.  All computations with 
Custom Algebraics, if any, are on the DLL side.  Some models such as load models may require custom 
variables of this type. 

5. Hard-coded Available Signals by Index for Each Model Class 
Certain signals are always automatically made available to each model based on its class.  The values of 
the signals are located inside the HardCodedSignals array of the TTxMyModelData structure, using the 
indices given below.  Indexing begins at zero. 

Exciter Models  
HARDCODE_EXCITER_Vref                = 0; 
HARDCODE_EXCITER_InitFieldVoltage    = 1; 
HARDCODE_EXCITER_FieldCurrent        = 2; 
HARDCODE_EXCITER_GenVcomp            = 3; 
HARDCODE_EXCITER_GenSpeedDeviationPU = 4; 
HARDCODE_EXCITER_BusVoltMagPU        = 5; 
HARDCODE_EXCITER_StabilizerSignal    = 6; 
HARDCODE_EXCITER_OELActive           = 7; 
HARDCODE_EXCITER_OELSignal           = 8; 
HARDCODE_EXCITER_UELActive           = 9; 
HARDCODE_EXCITER_UELSignal           = 10; 
 

[Index] Signal  Description 
[0] HARDCODE_EXCITER_Vref Voltage reference for the exciter.  Value should 

be set by the DLL during initialization and is an 
input afterward. 

[1] HARDCODE_EXCITER_InitFieldVoltage     Initial value of machine field voltage Efd.  Input 
only. 

[2] HARDCODE_EXCITER_FieldCurrent         Present value of machine field current Ifd.  Input 
only. 

[3] HARDCODE_EXCITER_GenVcomp             Compensated terminal voltage of the machine.  
Input only. 

[4] HARDCODE_EXCITER_GenSpeedDeviationPU Generator speed deviation Δω.  Input only. 
[5] HARDCODE_EXCITER_BusVoltMagPU         Generator terminal voltage magnitude.  Input 

only. 
[6] HARDCODE_EXCITER_StabilizerSignal     Input signal from stabilizer Vs.  Input only. 
[7] HARDCODE_EXCITER_OELActive            Flag for active over excitation limiter (OEL), 1 

indicates active. 
[8] HARDCODE_EXCITER_OELSignal            OEL signal, if active.  Input only. 
[9] HARDCODE_EXCITER_UELActive            Flag for active under excitation limiter (UEL), 1 

indicates active. 
[10] HARDCODE_EXCITER_UELSignal            UEL signal, if active.  Input only. 



 

Governor Models  
HARDCODE_GOV_Pref                = 0; 
HARDCODE_GOV_InitPmech           = 1; 
HARDCODE_GOV_GenSpeedDeviationPU = 2; 
HARDCODE_GOV_GenPElecPU          = 3; 
HARDCODE_GOV_GenMVABase          = 4; 
HARDCODE_GOV_GovResponseLimits   = 5; 
HARDCODE_GOV_StabStatePitch      = 6; 
 

[Index] Signal  Description 
[0] HARDCODE_GOV_Pref                 Power reference Pref.  Value should be set by the DLL 

during initialization and is an input afterward. 
[1] HARDCODE_GOV_InitPmech            Initial mechanical power Pmech.  Input only. 
[2] HARDCODE_GOV_GenSpeedDeviationPU Generator speed deviation Δω.  Input only. 
[3] HARDCODE_GOV_GenPElecPU           Electrical power Pelec.  Input only. 
[4] HARDCODE_GOV_GenMVABase           Generator MVA base.  Input only. 
[5] HARDCODE_GOV_GovResponseLimits    Governor response limits.  A byte representing the 

“GE Baseload_flag” parameter, where 0 means 
“normal” (valves act normally and can open or close), 
1 means “close only” response (valves can close but 
not open), and 2 means “fixed” response (valve is 
stuck at present position).  Input only. 

[6] HARDCODE_GOV_StabStatePitch       Pitch input from “stabilizer” pitch model.  Input only.  
Applicable only for wind models. 

 

Stabilizer Models 
HARDCODE_STAB_GenSpeedDeviationPU    = 0; 
HARDCODE_STAB_BusFreqDeviationPU     = 1; 
HARDCODE_STAB_GenPElecPU             = 2; 
HARDCODE_STAB_GenPAccelPU            = 3; 
HARDCODE_STAB_BusVoltMagPU           = 4; 
HARDCODE_STAB_GenVcomp               = 5; 
 

[Index] Signal  Description 
[0] HARDCODE_STAB_GenSpeedDeviationPU     Generator speed deviation Δω.  Input only. 
[1] HARDCODE_STAB_BusFreqDeviationPU      Bus frequency deviation Δω.  Input only. 
[2] HARDCODE_STAB_GenPElecPU              Electrical power Pelec.  Input only. 
[3] HARDCODE_STAB_GenPAccelPU             Accelerating power Paccel.  Input only. 
[4] HARDCODE_STAB_BusVoltMagPU            Generator terminal voltage magnitude. Input only. 
[5] HARDCODE_STAB_GenVcomp                Compensated terminal voltage of the machine.  Input 

only. 
 

Machine Models  
HARDCODE_MACHINE_TSGenFieldV = 0; 
HARDCODE_MACHINE_TSPmech     = 1; 



HARDCODE_MACHINE_InitVreal   = 2; 
HARDCODE_MACHINE_InitVimag   = 3; 
HARDCODE_MACHINE_InitIreal   = 4; 
HARDCODE_MACHINE_InitIimag   = 5; 
HARDCODE_MACHINE_TSstateId   = 6; 
HARDCODE_MACHINE_TSstateIq   = 7; 
 

[Index] Signal  Description 
[0] HARDCODE_MACHINE_TSGenFieldV Field voltage Efd signal from exciter.  Value should be 

set by the DLL during initialization and is an input 
afterward.   

[1] HARDCODE_MACHINE_TSPmech Mechanical power Pmech signal from governor.  
Value should be set by the DLL during initialization 
and is an input afterward. 

[2] HARDCODE_MACHINE_InitVreal    Real part of the initial terminal voltage.  Input only. 
[3] HARDCODE_MACHINE_InitVimag    Imaginary part of the initial terminal voltage.  Input 

only. 
[4] HARDCODE_MACHINE_InitIreal    Real part of the initial terminal current.  Input only. 
[5] HARDCODE_MACHINE_InitIimag Imaginary part of the initial terminal current.  Input 

only. 
[6] HARDCODE_MACHINE_TSstateId    Machine d-axis current Id.  Value should be set during 

machine initialization and is an input afterward.  
Then, this value is maintained by Simulator using the 
Thevenin or Norton equivalent parameters from the 
DLL. 

[7] HARDCODE_MACHINE_TSstateIq    Machine q-axis current Iq.  Value should be set during 
machine initialization and is an input afterward.  
Then, this value is maintained by Simulator using the 
Thevenin or Norton equivalent parameters from the 
DLL. 

 

Load Characteristic Models   
HARDCODE_LOAD_DeviceVPU      =  0; 
HARDCODE_LOAD_DeviceAngleRad =  1; 
HARDCODE_LOAD_DeltaFreqPU    =  2; 
HARDCODE_LOAD_DeviceStatus   =  3; 
HARDCODE_LOAD_LoadScalar     =  4; 
 

[Index] Signal  Description 
[0] HARDCODE_LOAD_DeviceVPU Load bus voltage magnitude.  Input only. 
[1] HARDCODE_LOAD_DeviceAngleRad Load bus voltage angle.  Input only. 
[2] HARDCODE_LOAD_DeltaFreqPU     Load bus frequency deviation from nominal Δω.  

Input only. 
[3] HARDCODE_LOAD_DeviceStatus    A boolean indicating whether the load is in service.  

Input only. 
[4] HARDCODE_LOAD_LoadScalar      A scalar for scaling the load.  All loads that derive 

from this load should be multiplied by this scalar.  



This is initially 1, but load relays may cause it to be 
reduced. 

 

Multi-Terminal DC Converter Models   
HARDCODE_MTDCConv_IRef         =  0; 
HARDCODE_MTDCConv_InitIOrd     =  1; 
HARDCODE_MTDCConv_InitCosAngle =  2; 
HARDCODE_MTDCConv_Idc          =  3; 
HARDCODE_MTDCConv_Vdc          =  4; 
HARDCODE_MTDCConv_Vac          =  5; 
 

[Index] Signal  Description 
[0] HARDCODE_MTDCConv_IRef Present value of the current reference ID_Ref.  Value 

should be set by the DLL during initialization and is an 
input afterward.  

[1] HARDCODE_ MTDCConv _InitIOrd Initial current order.  Input only. 
[2] HARDCODE_ MTDCConv _InitCosAngle     Initial cosine of the control angle.  Here, this signal is 

input only.  Its value should be maintained by the DLL 
in the MTDCConverterCosControlAngle function. 

[3] HARDCODE_ MTDCConv _Idc   DC current in Amps.  Input only. 
[4] HARDCODE_ MTDCConv _Vdc      DC voltage in kV.  Input only. 
[5] HARDCODE_ MTDCConv _Vac      AC voltage in pu.  Input only. 

 

Multi-Terminal DC Line Models   
Multi-terminal DC lines will receive the following hardcoded signals for each converter model. 
 
HARDCODE_MTDC_Iref     =  0; 
HARDCODE_MTDC_Idc      =  0; 
HARDCODE_MTDC_Vdc      =  1; 
HARDCODE_MTDC_Vac  =  2; 
HARDCODE_MTDC_IdcSense =  3; 
HARDCODE_MTDC_VdcSense =  4; 
HARDCODE_MTDC_VacSense =  5; 
 

[Index] Signal  Description 
[0] HARDCODE_MTDC_IRef Present value of the current reference ID_Ref from the 

converter.  
[1] HARDCODE_ MTDC _Idc MTDC line section current in Amps from network 

solution. 
[1] HARDCODE_ MTDC _Vdc MTDC voltage at the DC bus from network solution. 
[2] HARDCODE_ MTDC _Vac     MTDC voltage at the AC bus from networks olution. 
[3] HARDCODE_ MTDC _IdcSense   Sensed DC current in Amps from the converter. 
[4] HARDCODE_ MTDC _VdcSense Sensed DC voltage in kV from the converter.   
[5] HARDCODE_ MTDC _VacSense      Sensed AC voltage in pu from the converter. 

 



6. Exported Functions for Each Model Class 
A list of function names that must be made available in the export directory of the DLL for each model 
class is given below.  Functions with names in italic are optional.  Detailed descriptions of each function 
are given in the tables that follow.  Data type compatibility is discussed in Section 8.  The functions in the 
export directory of the DLL file are all called using the stdcall calling convention which is a variation on 
the Pascal calling convention in which the callee is responsible for cleaning up the stack, but the 
parameters are pushed onto the stack in right-to-left order. Registers EAX, ECX, and EDX are designated 
for use within the function. Return values are stored in the EAX register. 

Note that the function calls (including names and parameter types) exported from this DLL must exactly 
match those being expected in Simulator (as listed below).   

All - General 
DLLVersion  
modelClassName 
allParamCounts 
parameterName 
stateName 
getDefaultParameterValue 
OtherObjectClass 
OtherObjectDescription 
getStringParamDefaultValue 
signalSelection 
 

DLLVersion  
 
An integer to support versioning in the future.  Currently, use “1.” 
parameters N/A 
result Integer 
modelClassName 
 
Simulator calls this function twice, once to get the length (“result”) in characters of the model 
class name, and once to retrieve the model class name, i.e. “UserDefinedExciter,” in the buffer 
which Simulator allocates.  The purpose of this function is for Simulator to recognize the type of 
transient stability model contained in the DLL.  This should be one of the supported classes. 
parameters (StrSize:PInteger; StrBuf : PChar; dummy : Integer) 
result Integer 
allParamCounts 
 
Fills the TTxParamCounts structure in Simulator to tell Simulator how much memory to allocate.  
parameters (var numbersOfEverything : TTxParamCounts; TimeStepSeconds : 

double) 
result N/A 
parameterName 
 



Simulator calls this function twice for each parameter and works the same way as 
modelClassName. 
parameters (paramNum : PInteger; StrSize : PInteger; StrBuf : PChar; dummy : 

Integer) 
result Integer 
stateName  
 
Works the same way as modelClassName. 
parameters  (paramNum : PInteger; StrSize : PInteger; StrBuf : PChar; dummy : 

Integer) 
result Integer 
getDefaultParameterValues 
 
Simulator retrieves the default parameter values inside a TTxMyModelData structure. 
parameters (paramsAndStates : PTxMyModelData) 
results N/A  
OtherObjectClass 
 
The PowerWorld class of each “other object” to be used.  This function must be written if the 
model uses “other objects.”  This must match the object name in Simulator, i.e. “Bus.”  Works the 
same way as modelClassName.  “Num” gives the index of the other object in the list. 
parameters (Num : PInteger; StrSize : PInteger; StrBuf : PChar; dummy : Integer) 
results Integer 
OtherObjectDescription 
 
A user-specified description of each “other object” to be used, i.e. “Signal Bus,” used for the GUI.  
This function should be written if the model uses “other objects.”   
parameters (Num : PInteger; StrSize : PInteger; StrBuf : PChar; dummy : Integer) 
results Integer 
getStringParamDefaultValue 
 
Default values for string parameters, if any. 
parameters (Num : PInteger; StrSize : PInteger; StrBuf : PChar; dummy : Integer) 
results Integer 
signalSelection 
 
Names of fields in ALG vector at position Num.  Only fields that Simulator knows about should 
appear. This includes fields corresponding to “other objects,” where the format is 
“FieldName:BusLoc:Digits,” where Digits specifies the other object (Num) in otherObjectClass and 
otherObjectDescription. Custom algebraics should only appear at the end of the ALG vector, and 
are not listed here.   
parameters (Num : PInteger; StrSize : PInteger; StrBuf : PChar; dummy : Integer) 
results Integer 

 
  



All - Numerical Integration 
initializeYourself 
calculateFofX 
PropogateIgnoredStateAndInput 
SubIntervalPower2Exponent 
getNonWindUpLimits 
TimeStepEnd 
TimeStepEndAction 

initializeYourself 
 
Initialization of the dynamic model.  By assuming f(x) is zero at steady-state, the initial values of 
the model states are set inside the TTxMyModelData structure, pointed to by PTxMyModelData.  
The TTxMyModelData structure shares relevant network input fields with the DLL and allows the 
DLL to set the values of the calculated fixed input fields needed by Simulator.  Relevant system 
options are also shared.  See description of the TTxMyModelData and TTxSystemOptions 
structures.   
parameters (paramsAndStates  : PTxMyModelData; SystemOptions : 

PTxSystemOptions) 
results N/A 
calculateFofX 
 
These are the differential equations of the model, xdot = f(x), which get called every time step.  
The actual numerical integration of these equations is handled in Simulator. 
parameters (paramsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions; nonWindUpLimits : PTxNonWindUpLimits; dotX : 
PDouble) 

results N/A 
PropogateIgnoredStateAndInput 
 
This function handles ignored states.  That is, if choices for certain parameter values cause a state 
to be “ignored,” this function must make sure the inputs to the ignored state are correctly 
propagated through to the next state. ParamsAndStates.IgnoreStates is used to propogate the 
values and should be set in the initialization function based on the parameters.  An example of 
this is the User_IEEEST model. 
parameters (paramsAndStates  : PTxMyModelData; SystemOptions : 

PTxSystemOptions) 
results N/A 
SubIntervalPower2Exponent 
 
This is an optional function that tells Simulator the exponent to use when determining the 
number of subintervals for integrating the model.  The actual number of subintervals will be 
calculated as 2^exponent, so if you want 8 subintervals, this function should return 3 (2^3=8). 
parameters N/A 
results Integer 
getNonWindUpLimits 
 
This function tells Simulator the index of states which have non-windup limits and the values of 



those limits by setting LimitStates, minLimits, and maxLimits inside the TTxNonWindUpLimits 
structure.  “Result” specifies how many states have nonwindup limits.  States are indexed starting 
at zero. 
parameters (paramsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions; nonWindUpLimits : PTxNonWindUpLimits) 
results N/A 
TimeStepEnd 
 
This function can perform specific checks at the end of a timestep and returns true if an action 
should actually occur at the end of the timestep.  The User_CLOD model uses this to check 
whether to perform an undervoltage trip. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions; index : Integer; MaxPossibleEventIndex : 
PInteger; EventTime : PDouble; ExtraObjectIndex : PInteger) 

results Boolean 
TimeStepEndAction 
 
This function returns a string containing the name of the action for Simulator to perform 
corresponding to the same “index” in TimeStepEnd, a pipe character |, and a custom log 
message.  The action should match PowerWorld’s syntax for event descriptions, i.e. keyword 
“OPEN” will trip a load.  Like all string functions, this is called twice. 
parameters (ParamsAndStates : PTxMyModelData;                            

SystemOptions : PTxSystemOptions; index : integer;                           
StrSize: PInteger; StrBuf: PChar; dummy : Integer) 

results Boolean 
 

Exciter Models  
ExciterEfieldOut 
 

ExciterEfieldOut 
 
This function returns the final value of Efield from the exciter, taking into account any limits.  This 
value is the field voltage of the machine model, EFD. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions) 
results Double 

 

Governor Models  
GovernorPmechOut 
 

GovernorPmechOut 
 
This function returns Pmech out of the governor.  This value is the mechanical power input for the 
machine model. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 



PTxSystemOptions) 
results Double 

 

Stabilizer Models 
StabilizerVsOut 
StabilizerPitchOut 
 

StabilizerVsOut 
 
This function returns VS out of the Stabilizer, which is passed into the exciter. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions) 
results Double 
StabilizerPitchOut 
 
If the “stabilizer” is a wind turbine pitch control model, this function returns its pitch, to be used 
by the wind turbine “governor” model. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions) 
results Double 

 

Machine Models  
MachineSpeedDeviationOut 
MachineTheveninImpedance 
MachineTheveninVoltage 
MachineFieldCurrent 
MachineElectricalTorque 
MachineNortonCurrent 
MachineHighVReactiveCurrentLim 
MachineLowVActiveCurrentPoints 
MachineCompensatingImpedance 
 

MachineSpeedDeviationOut 
 
This function returns the machine speed deviation from synchronous, which is normally also a 
state.  This is passed into the governor model.  It is also be used with Generic Limit Monitors to 
implement basic protection functionality for low frequency, high frequency, or excessive change.   
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions) 
results Double 
MachineTheveninImpedance 
 
This function returns the equivalent Thevenin impedance of the machine (R + jX), which is passed 
back to the network.  For the GENCLS model, this is simply (Ra + jXd’). 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 



PTxSystemOptions; theR : PDouble; theX : PDouble) 
results Double 
MachineTheveninVoltage 
 
This function returns the equivalent Thevenin voltage of the machine in the form (Vd+jVq)ej(δ-π/2), 
which is passed back to the network.   
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions; Delta : PDouble; Vd    : PDouble; Vq    : PDouble) 
results Double 
MachineFieldCurrent 
 
This function returns the field current of the machine, which feeds into the exciter model as IFD.  
This may also be checked by other models such as over excitation limiters (OELs) and under 
excitation limiters (UELs). 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions) 
results Double 
MachineElectricalTorque 
 
This function returns the electrical torque delivered by the machine. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions) 
results Double 
MachineNortonCurrent 
 
This function returns the equivalent Norton current of the machine, which is passed back to the 
network.  This function can be written instead of the Thevenin equivalent voltage. 
parameters (ParamsAndStates : PTxMyModelData;  SystemOptions : 

PTxSystemOptions; IReal : PDouble; IImag : PDouble) 
results Double 
MachineHighVReactiveCurrentLim 
 
Returns the high voltage limit for high voltage reactive current management, if any.  If this voltage 
is exceeded at the bus, the functionality adjusts the reactive power injection to clamp the voltage.  
If this voltage is exceeded during initialization, the limit is assumed to be incorrect and is ignored. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions) 
results Double 
MachineLowVActiveCurrentPoints 
 
For low voltage active current management.  Returns the breakpoints, if any.  When the bus 
voltage is above Lvpt1, no low voltage logic is used.  When the bus voltage is below Lvpnt0, the 
active current is zero.  Between Lvpt1 and Lvpt0, the active current is linearly ramped down.  This 
should only occur during a fault.   
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions; Lvpnt1 : PDouble; Lvpnt0 : PDouble) 



results N/A 
MachineCompensatingImpedance 
 
This function returns the compensating resistance and reactance for the machine, if any. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions; Rcomp : PDouble; Xcomp : PDouble) 
results N/A 

 

Load Characteristic Models   
LoadNortonAdmittance 
LoadNortonCurrent 
LoadNortonCurrentAlgebraicDerivative 
LoadInitializeAlgebraic  
 

LoadNortonAdmittance 
 
Returns the equivalent Norton admittance of the load. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions; theG : PDouble; theB : PDouble) 
results N/A 
LoadNortonCurrent 
 
Returns the equivalent Norton current of the load. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions; IReal : PDouble; IImag : PDouble) 
results N/A 
LoadNortonCurrentAlgebraicDerivative 
 
Derivative of the equivalent Norton current of the load with respect to rectangular voltage.   
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions; IReal_dVreal : PDouble; IReal_dVimag : PDouble; 
IImag_dVreal : PDouble; IImag_dVimag : PDouble) 

results N/A 
LoadInitializeAlgebraic 
 
Initializes the algebraic variables for the load, including the P and Q used.  Custom algebraic 
variables in the Algebraics vector may be initialized here.  Returns true if successful. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions; INPUT_PUTol, SteadyStateP, SteadyStateQ, 
SteadyStateV : Double;  InitLoadP, InitLoadQ : PDouble) 

results Boolean 
 
  



Multi-Terminal DC Converter Models   
MTDCConverterCosControlAngle 
MTDCConverterIdcSense 
MTDCConverterVdcSense 
MTDCConverterVacSense 
MTDCConverterCurrentLimitAndMargin 
 

MTDCConverterCosControlAngle 
 
Returns the output of the converter, the cosine of the control angle, either cos(α) or cos(β), 
depending on whether the converter is acting as a rectifier or inverter, respectively. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions) 
results Double 
MTDCConverterIdcSense 
 
Returns the DC current which changes when the control angle changes.  Other converters 
connected to the same DC network may need to use this current. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions) 
results Double 
MTDCConverterVdcSense 
 
Returns the DC voltage at the converter terminal. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions) 
results Double 
MTDCConverterVacSense 
 
Returns the AC voltage at the converter terminal. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions) 
results Double 
MTDCConverterCurrentLimitAndMargin 
 
Sets the current limit on the current order (Iord) and margin for the limit.  The margin 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions; IdRefLim, fid_Margin : PDouble) 
results N/A 

 
  



Multi-Terminal DC Line Models   
MultiTerminalDCGetIDRef 
NetworkSolutionEnd 
 

MultiTerminalDCGetIDRef 
 
This function returns the reference current IDRef. 
parameters (ParamsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions; index : integer) 
results Double 
NetworkSolutionEnd 
 
Called at the end of the time step to perform any final actions. 
parameters (paramsAndStates : PTxMyModelData; SystemOptions : 

PTxSystemOptions) 
results N/A 

 

7. Memory Sharing Data Structures 
Data sharing between user defined transient stability model DLLs and Simulator is accomplished using 
the following structures on the DLL side.    The Simulator side performs all memory allocation 
management. 

TTxMyModelData Record 
  TTxMyModelData = record 
    FloatParams  : PDouble;   
    IntParams    : PInteger;  
    StrParams    : PPChar;    
    HardCodedSignals : PDouble;   
    States       : PDouble;  
    IgnoreStates : PBoolean;     
    Algebraics   : PDouble;   
  end; 
  PTxMyModelData = ^TTxMyModelData; 
 

TTxSystemOptions Record 
  TTxSystemOptions = record 
    IgnoreLimitChecking   : boolean; 
    TimeStepSeconds       : double; 
    SimulationTimeSeconds : double; 
    WBase                 : double; 
    SBase                 : double; 
    PUSolutionTolerance   : double; 
    MinVoltSLoad          : double; 
    MinVoltILoad          : double; 
  end; 
  PTxSystemOptions = ^TTxSystemOptions; 
 



TTxNonWindUpLimits Record 
  TTxNonWindUpLimits = record 
    LimitStates  : PInteger;  
    minLimits    : PDouble;   
    maxLimits    : PDouble;   
    activeLimits : PByte;      
  end; 
  PTxNonWindUpLimits = ^TTxNonWindupLimits; 
 

TTxParamCounts Record 
  TTxParamCounts = record 
    nFloatParams  : Integer;  
    nIntParams    : Integer;  
    nStrParams    : Integer;  
    nStates       : Integer;  
    nAlgebraics   : Integer;  
    nNonWindUpLimits : Integer;  
  end; 
  PTxParamCounts = ^TTxParamCounts; 
 
 

TTxMyModelData 
 
A record containing all state, parameter, and signal data associated with each instance of a user 
defined model. 
FloatParams : PDouble Pointer to array of double parameters 
IntParams : PInteger Pointer to array of integer parameters 
StrParams : PPChar Pointer to array of string parameters 
HardCodedSignals : PDouble Pointer to double array of hard-coded signals from PW.  These are 

always the same for all models of each class (i.e., all stabilizers, 
governors, etc.).  Simulator always shares these signals with the 
DLL.  If additional signals are needed from Simulator, they must be 
defined using the Algebraics array and the signalSelection 
function. 

States : PDouble Pointer to double array of state variables x 
IgnoreStates : PBoolean Pointer to a boolean array indicating whether each state is to be 

ignored 
Algebraics : PDouble Pointer to a double array containing all signals other than the 

hardcoded signals.   
 
The signalSelection function can define and then the Algebraics 
array can access any fields that are available in Simulator. The 
signalSelection function lists the object/fields to be accessed, and 
the Algebraics array is where the actual values are located.   
 
Additionally, the Algebraics array may be used by the DLL to 
maintain its own “custom” algebraic variables.  Custom algebraics 
must appear in the array AFTER the variables defined by 



signalSelection.  An example of a model that uses custom 
algebraics is the User_CLOD model. 

TTxSystemOptions 
 
A record containing system options that may be relevant to the user defined model during the 
transient stability simulation.  These are available to the DLL from Simulator. 
IgnoreLimitChecking : boolean Set to true if limits should be ignored 
TimeStepSeconds : double The time step in seconds 
SimulationTimeSeconds : double The present time in seconds in the transient stability 

simulation.  This is useful for models that use timers. 
WBase : double The base frequency in rad/sec 
SBase : double The three-phase power base 
PUSolutionTolerance : double  
MinVoltSLoad : double The minimum allowable voltage for constant power load 
MinVoltSLoad : double The minimum allowable voltage for constant current load 
TTxNonWindUpLimits 
 
A record specifying the states which have non-windup limits, what the limit values are, and which 
limits are presently active for each state.   
LimitStates : PInteger A pointer to an integer array specifying the states by number 

which have non-windup limits.   
minLimits : PDouble A pointer to a double array listing the minimum values of the 

limits for the states in LimitStates 
maxLimits : PDouble A pointer to a double array listing the maximum values of the 

limits for the states in LimitStates 
activeLimits : PByte A pointer to a byte array which contains information on 

which limits are active.  For each limit in LimitStates, a value 
of 0 means not active, 1 means active at the high limit, and 2 
means active at the low limit. 

TTxParamCounts 
 
A record used to hold and access the counts of each of array.  This prevents us from requiring 
many different “getNumberOf” functions in the DLL that need to be called by Simulator in order 
to allocate memory.  It is convenient to define these numbers as constants in the DLL. 
nFloatParams : Integer Number of double parameters 
nIntParams : Integer Number of integer parameters 
nStrParams : Integer Number of string parameters  
nStates : Integer Number of dynamic states  
nAlgebraics : Integer Number of algebraic variables in the Algebraics array.  This 

number MUST include any custom algebraics in addition to 
the algebraics defined by signalSelection. 

nNonWindUpLimits : Integer Number of states with non-windup limits 
 



Extra Objects 
In addition to having access to all of an object’s own fields, each user defined model also has the ability 
to specify “extra objects,” where fields for other objects can serve as inputs or outputs to the model. 

Values corresponding to the extra objects are stored in the algebraic vector.  The corresponding object 
and field identifiers are specified in the signalSelection function. 

DLL Side 
The DLL does not know which particular object is selected, but it knows what field type it requires, and it 
knows the index in the Algebraics array where it expects to find the value obtained from Simulator.  The 
functions OtherObjectClass and OtherObjectDescription must be written to specify what field is 
required. 

Simulator Side 
There is a dialog for specifying the extra objects on the Simulator side.  For example, all the DLL knows is 
that it requires a “voltage” at a “signal bus.”  Then, the user can choose the object, i.e. “Bus 3” on the 
Simulator side.  

8. Compatibility with Other Programming Languages 
DLLs created in the programming languages Pascal, C++, and Fortran have been debugged and tested for 
compatibility with PowerWorld Simulator.  This section details the important differences of these 
languages for PowerWorld UDM implementation.   

Data Structures and Variable Passing 
Implementation of the required variables and data structures is very similar in all three programming 
languages.  Example data structures are illustrated in Figure 1 and Figure 2.  A structure with pointers to 
arrays and an array are shown, respectively.  The implementation of these is slightly different in Fortran.  
Fortran also behaves somewhat differently when these variables are being passed to and from 
functions. While Pascal and C++ allow both pass by value and pass by reference, Fortran always uses 
pass by reference. To maintain compatibility with all three languages, some variables such as ParaNum, 
StateNum, StrSize, and dummy are intentionally passed as pointers to their respective locations, even 
though it is not necessary in Pascal and C++.  The variable “dummy” appears in the function definitions 
in Pascal and C++, but not in Fortran.  It represents a hidden input argument which is inserted and 
expected automatically on the Fortran side whenever a character array is being exchanged. Again, to 
maintain compatibility, “dummy” must appear appropriately in Pascal and C++, but does not show up in 
Fortran code. 

There is no limit to the number of characters each string parameter (i.e., parameter name) can have in 
Pascal and C++. However, a 30 character limit has been set in the templates created in Fortran, which 
can be increased by altering a parameter in the Fortran script.  

 



0 ... (N_F_PARAMS – 1)

array of 64-bit floats

0 ... (N_I_PARAMS – 1)

array of 32-bit integers

0 ... (N_S_PARAMS – 1)

array of array of 16-bit characters

0 ... (N_STATES – 1)

array of 64-bit floats

0 ... (N_ALGEBRAICS – 1)

array of 64-bit floats

FloatParams

pointer to array

IntParams

pointer to array

StrParams

pointer to array

States

pointer to array

Algebraics

pointer to array

ParamsAndStates

 

Figure 1: Structure with Pointers to Arrays 

0 ... (N_STATES – 1)

array of 64-bit floats

dotX

 

Figure 2: Array 

Data Type Compatibility 
In mixed-language programming, particular attention needs to be given toward data type compatibility 
between programming languages. There might be limitations, but the commonly used data types are 
usually available in any programming language. 

Table 1. Comparison between data types across languages 

Bytes 
[Bits] 

Pascal 
(Embarcadero® Delphi® XE 

Version 15.0) 

C++ 
(Microsoft® Visual Studio 

2010) 

Fortran 
(Microsoft® Visual Studio 

2010 with Silverfrost FTN95 
plug-in) 

1 [8] ShortInt __int8 integer(kind = 1) 
2 [16] SmallInt __int16 integer(kind = 2) 
4 [32] Integer int integer(kind = 3) 
1 [8] Byte unsigned __int8  

2 [16] Word unsigned __int16  
4 [32] Cardinal unsigned int  
1 [8] Boolean, ByteBool bool logical(kind = 1) 

2 [16] WordBool  logical(kind = 2) 
4 [32] LongBool  logical(kind = 3) 
4 [32] Single float real(kind = 1) 
8 [64] Double double real(kind = 2) 

10 [80] Extended, Real (32-bit sys.)  real(kind = 3) 
1 [8] AnsiChar char character 



2 [16] Char, WideChar wchar_t  
 

Table 1 is not an exhaustive collection of data types, but a guide for those most commonly used. There 
are possibly other aliases, which can be found within documentation of each language [1], [2], [3]. The 
point to take note of is that, for cross-language compatibility, the type and the size of data types must 
match. 

9. Tutorial and Example DLL Files 
A tutorial and example DLL project files are available for all three languages. 

10. References 
                                                           
[1]http://docwiki.embarcadero.com/RADStudio/en/Delphi_Data_Types 

[2]http://msdn.microsoft.com/en-us/library/s3f49ktz(v=vs.100).aspx 

[3]http://www.silverfrost.com/ftn95-help/mixlan/basicdatatypes.aspx 

 

http://docwiki.embarcadero.com/RADStudio/en/Delphi_Data_Types
http://msdn.microsoft.com/en-us/library/s3f49ktz(v=vs.100).aspx
http://www.silverfrost.com/ftn95-help/mixlan/basicdatatypes.aspx
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